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Embedded-cluster calculations for transition-metal
impurities in BaTiO 3

H Donnerberg†§ and R H Bartram‡
† University of Osnabr̈uck, FB Physik, D-49069 Osnabrück, Germany
‡ University of Connecticut, Department of Physics, Storrs, CT 06269-3046, USA

Received 26 October 1995

Abstract. The embedded-cluster technique is used to simulate the local electronic structure of
transition-metal impurities in BaTiO3. The description of the central defect cluster employs an
ab initio SCF-MO approach. The quantum cluster consists of 21 ions. Outer crystal regions
are modelled on the basis of a shell-model representation. In all cases defect-induced lattice
relaxations have been consistently included. Our results, demonstrated for Mn4+

Ti , concern
optical transitions, Jahn–Teller effects and questions related to the stability of this defect. The
computational level of ourab initio calculations corresponds to Hartree–Fock theory (HF) and
the configuration interaction (CI). Additionally, Møller–Plesset perturbation theory and density
functional theory have been applied to investigate charge-transfer transitions.

1. Introduction

BaTiO3 represents an important photorefractive material with interesting prospects for
technological applications. It is well documented that transition-metal cations doped into this
perovskite play a central role for photorefractivity to occur [1, 2]. Also, the development of
tunable solid-state lasers is based on transition-metal impurities in suitable host systems [3].

Theoretical investigations of point defect centres, of which transition-metal impurities
form a subset, aim to address all of the important questions related to the electronic and
structural properties of defects. For this purpose, basically three approaches are known
to be adequate: full electron supercell simulations which are in the spirit of perfect-
crystal bandstructure calculations, Green’s function treatments and embedded-quantum-
cluster calculations. We employ the latter approach, since only this one easily allows
us to study the local electronic defect structure of charged point defects taking full account
of lattice relaxations. This is accomplished by representing the embedding lattice on the
basis of a pair-potential shell-model description. Defect-induced lattice distortions are to
be expected in BaTiO3 because of the semi-ionic bonding properties of this oxide material.
Green’s function approaches and supercell calculations, on the other hand, are much more
restricted to neutral defects and are less well suited to including lattice distortions. Their
success is mainly related to a description of defects in semiconductors.

So far, embedded-cluster simulations have been reported for a number of different defect
species in ionic materials including impurity cations, anion vacancies and hole-type defects
in alkali halides, elpasolites and in basic binary oxides such as MgO (see, for example,
[4–8]). In the present contribution we discuss the details of our previous investigations [9]
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on BaTiO3:Mn4+
Ti . The reason for choosing Mn4+ as a test case of our simulations is based

on the observation that this impurity cation represents a neutral defect when substituting
for Ti4+. Further, Mn4+ is isoelectronic to the important Cr3+. We have chosen BaTiO3
as the host material because of its technological importance. Unfortunately, there is no
experimental information for Mn4+ in cubic BaTiO3. It has been argued [10, 11] that the
pronounced dynamical order–disorder effects leading to ferroelectricity affect the Mn4+ and
are responsible for the absence of data. In order to compensate for this deficiency we
compare our calculations with observations for the isoelectronic SrTiO3:Mn4+, instead. The
two perovskite oxides are structurally very similar; however, unlike the barium compound,
SrTiO3 remains paraelectric at all temperatures.

Our results, which concern optical crystal-field (CF) transitions, defect-induced lattice
relaxations, Jahn–Teller distortions related to the excited4T2g state and charge-transfer (CT)
transitions, have been obtained by applying a Hartree–Fock (HF) treatment to a central 21-
atom quantum cluster. Most of these calculations are further compared with more advanced
simulations employing an extensive configuration interaction description in order to include
important electron correlation contributions. Moreover, auxiliary calculations based on
Møller–Plesset perturbation theory and density functional theory have been performed to
indicate the importance of correlations with respect to charge-transfer transitions.

By including electron correlations and charge-transfer transitions the present work
extends the methods of previous investigations [6].

2. Method

A quantum chemical description of a central defect cluster is at the heart of any embedded-
cluster calculation (ECC). The various existing ECC can be distinguished with respect
to the size of the cluster and to the representation of the embedding lattice. Other
differences address the level of sophistication of the quantum mechanical calculations.
Possible choices relate to the use of Hartree–Fock or density functional theory (DFT),
of which the latter approach is known to be particularly well suited for electronic ground
states. Since our investigations aim at the accurate characterization of both ground and
excited states, we decided to mainly employ the HF one-electron approximation (if not
explicitly stated we used the restricted open-shell HF approximation) augmented with
suitable correlation treatments. Auxiliary DFT calculations, on the other hand, have been
restricted to investigations of charge-transfer transitions. Employing ground-state functional
Kohn–Sham theory, the calculated energy separations between ground and excited states
provide in most cases lower bounds to the exact energy differences. However, the quality of
such lower bounds must in any instance be judged on the basis of different exact calculations.
For a brief discussion and corresponding results, refer to section 3.3.

The large number of two-electron exchange integrals, which need to be calculated and
stored prior to the SCF procedure implementation, forced us to include only a limited
number of atoms in our quantum calculation. Further constraints on the cluster size were
implied by our configuration interaction expansion. Therefore, following a reasonable
compromise we employedab initio LCAO-MO calculations for a central MO6Ba8Ti6 defect
cluster, which simulates the crystal lattice immediately neighbouring an MTi transition-metal
impurity cation in BaTiO3. The perfect-crystal structure has been assumed according to the
cubic high-temperature phase. The resulting 21-atom defect cluster MO6Ba8Ti6 is shown
in figure 1.

All subsequently reported results refer to tetravalent manganese Mn4+. To model
the electronic structure of the cluster, effective-core potentials (ECP) were employed in
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Figure 1. The quantum mechanical defect cluster. The immediate environment of the central
MnO6 complex consists of eight barium and six titanium cations which are represented by bare
effective-core potentials.

conjunction with double-zeta-quality basis functions for the valence orbitals on manganese
[12] and Dunning’s contractions of Huzinaga’s basis set for the oxygen ions [13]. The
oxygen basis set was further augmented with diffuse p and polarizing d functions. The
outer Ba and Ti ions were represented by bare effective-core potentials which simulate ion-
size effects of these cations. Theab initio ECP parametrization has been taken from Hay
and Wadt [12].

The formal cation charges used in this publication should not be understood to indicate
any pronounced ionicities of the systems considered. Instead, the notation is intended
to characterize the electronic open-shell structure of the (impurity) cations investigated;
e.g. Mn4+ denotes a 3d3-type open-shell configuration of manganese. Our calculations
confirm that there are generally significant hybridizations within the central MO6 octahedron
(particularly between the O 2p and thend orbitals of the transition-metal cation M).
Nevertheless, Mn4+ represents a neutral lattice defect in the sense that the corresponding
MnO6 complex carries the same total charge as the substituted intrinsic TiO6 complex
(i.e. −8|e|).

Besides HF theory we mainly used configuration interaction (CI) expansions to represent
important electronic correlation contributions. These calculations were restricted to the
inclusion of single and double electronic excitations (SDCI) with reference to the respective
HF states. On the basis of perturbation theory the 15 000 energetically most important
configurations were chosen for a further diagonalization of the CI Hamiltonian matrix
(the perturbation energy contribution of these retained states is denoted by PEK, and the
contribution of all neglected states by PEN). This procedure follows the earlier approach of
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Table 1. Calculated crystal-field splittings employing the various types of CI as introduced in
the text. The cluster geometry corresponds to cubic perfect-lattice spacings.

Type of CI 1CF = E(4T2g) − E(4A2g) (eV)

SDCI 1.15
SDCI+ Q 2.48

NO-SDCI 2.11
NO-SDCI+ Q 2.23

Rawlings and Davidson [14]. Size consistency has been approximated using the formula of
Davidson and Silver [15]:

Ecorr (SDCI+ Q) = EHF + c2
HF

2c2
HF − 1

[
1 − PEN

PEK

]
(Ecorr (SDCI) − EHF ) (1)

where cHF is the expansion coefficient of the HF wavefunction andEcorr (SDCI) the
uncorrected SDCI energy. The stability of these SDCI(+Q) results has been further tested
by calculating the natural orbitals, which by construction diagonalize the (SDCI) first-
order reduced density matrix, and iterating the configuration interaction with these orbitals
(the NO-SDCI(+Q) procedure [16]). It is recalled that natural orbitals provide the most
rapidly convergent CI expansion. In this sense the NO-SDCI(+Q) results are superior
to those of the SDCI(+Q) employing HF orbitals. Table 1 compiles energy separations
between electronic crystal-field states of Mn4+ which have been calculated employing these
various CI approaches. In all cases we found that the SDCI+ Q results are superior to
those for the uncorrected SDCI. The best results correspond to the NO-SDCI+ Q level.
As these calculations involve unreasonably large computer capacities, we employed the
following compromise: the SDCI+ Q method has been used to determine the required
total energy surfaces of the cluster, which were needed to perform the embedded-cluster
relaxation step (see below). Finally, energy separations have been recalculated for the
relaxed equilibrium configurations on the basis of the NO-SDCI+ Q method. Therefore,
if not explicitly specified, all subsequently reported CI energy differences correspond to
the NO-SDCI+ Q level. The clusterab initio calculations have been performed using the
quantum chemical program packages MELDF [17] and HONDO 7.0 [18]. The CADPAC
code [19] has been employed to perform additional charge-transfer calculations based on
Møller–Plesset perturbation theory and DFT (see section 3.3).

In the present work the embedding lattice was simulated by means of an interionic
effective-pair-potential model, i.e. the shell model [20]. By construction, crystal ions
consist of a massive core (chargeX) to which the shell of valence electrons (chargeY )
is harmonically bound (with spring constantk); the sumQ = X + Y specifies the total
integral ion charges. The free-electronic polarizability of the crystal ions is given by

α = Y 2

k
. (2)

Further pair potentials act between the components of different ions. Besides long-range
Coulomb potentials, short-range interactions must be included, which represent the interionic
repulsion, correlation and covalency contributions. The functional form of these short-range
potentials has been taken as a Buckingham potential:

V (r) = A exp(−r/ρ) − C

r6
. (3)
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It is noted that short-range potentials arising from electronic interactions are defined between
different ion shells.

The minimization of the lattice energy as a function of core and shell coordinates yields
the equilibrium configuration of perfect and defective lattices. In order to simulate isolated
defects a two-region strategy is employed by means of which the crystal is partitioned into
two regions: the inner region immediately surrounding the specified defect usually contains
∼300 ions and is treated atomistically, which means that this region is fully relaxed to
its equilibrium structure according to the underlying potentials; the outer region, i.e. the
remaining crystal, is described on the basis of the continuum theoretical Mott–Littleton
approximation [21]. The method is coded in the computer program CASCADE [22] which
is used in the present investigations. For details of solid-state computer simulations we refer
the reader to the monograph edited by Catlow and Mackrodt [23]. All potential parameters
appropriate for BaTiO3 and for impurity–oxygen interactions have been taken from the
extensive work of Lewis and Catlow [24]. These pair potentials have also been used to
specify the interactions of the cluster ions with the embedding shell-model ions.

The total energy of the ECC-type crystal is minimized with respect to the cluster
(nuclear) coordinatesRc and to core and shell coordinatesRo of the outer crystal ions. The
additionally required minimization with respect to the cluster wavefunction9 describing
the local electronic structure within the cluster region is performed by means of theab initio
HF(+CI)-SCF-MO calculations which were introduced above. The energy difference of the
total energy of the quantum defect clusterEclus

QM(9, Rc) corresponding to the electronic states
9 of interest (4A2g and4T2g for Mn4+) and its classical pair-potential counterpartEclus

SM (Rc)

was calculated on a 5× 5 × 5 mesh of a1g-symmetrical breathing-mode displacementsδ

of O2−, Ba2+ and Ti4+ ions surrounding the central impurity cation. These energy values,
fitted to a fourth-order polynomial

P9(δO, δBa, δTi) = Eclus
QM(9, Rc) − Eclus

SM (Rc) =
∑

n+m+p64

Anmpδn
Oδm

Baδ
p

Ti (4)

in the three types of displacement, were used to update the total pair-potential crystal energy
and gradients so as to include the embedding shell model as well as the quantum cluster
contributions. The total energy of the ECC crystal is given by

E(9, Rc, Ro) = E
crys

SM (Rc, Ro) + P9(δO, δBa, δTi) (5)

with

Rc(i) = R0
c (i) + δi (i = O, Ba, Ti). (6)

R0
c denotes the unrelaxed positions of cluster ions;E

crys

SM (Rc, Ro) is the shell-model energy
of the total crystal. The total crystal energy obtained from equation (5) comprises the
substitution for a pair-potential defect cluster of its quantum mechanical counterpart. The
short-range cluster–lattice interaction is modelled on the basis of the known pair potentials.
A rigorous basis for equation (5) can be given by the group function theory of McWeeny
[25] and Huzinaga and Cantu [26]. Further approximations then refer to the representation
of the cluster environment on the basis of a shell-model description.

The final crystal relaxation was performed using a modified version of the shell-
model program CASCADE [27]. Modifications of CASCADE were found to be necessary,
because the quantum cluster energy models an exact image of theab initio breathing-mode
potential energy surface and, thus, goes beyond the pair-potential approximation as used
in CASCADE. It is sufficient to update only the energy and gradients appropriately, since
CASCADE employs the variable-metric technique to minimize the crystal energy. Thus,
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the inverse Hessian is iteratively approximated using the updated coordinates and gradients
and, finally, converges to its exact form.

We emphasize in this context that we avoided constructing a tight link between the
CASCADE code and the quantum chemicalab initio programs employed, in order to retain
sufficient flexibility regarding theab initio step of our simulations.

Table 2. Total ion relaxations within the first three neighbour shells of Mn4+
Ti (4A2g and 4T2g

state).−: inward relaxation;+: outward relaxation.

4A2g-related ion relaxation (̊A)

Ion type ECC(CI) ECC(HF) Shell model

O2− −0.035 −0.046 −0.240
Ba2+ −0.347 −0.385 −0.190
Ti4+ + 0.113 + 0.100 + 0.01

4T2g-related ion relaxation (̊A)

Ion type ECC(CI) ECC(HF) Shell model

O2− −0.021 −0.037 −0.240
Ba2+ −0.348 −0.370 −0.190
Ti4+ + 0.119 + 0.106 + 0.01

On the basis of the cubic symmetry employed in the present problem, the quantum
mechanical cluster configuration can be determined fromin vacuocluster calculations. This
is true, since the first non-vanishing terms of the electrostatic crystal potential are of fourth
order and, further, the cluster multipole moments vanish up to the hexadecapole moment.
Generalizations to systems exhibiting symmetry lower than cubic would in principle be
straightforward; however, the computational costs increase rapidly with the additional
degrees of freedom. Moreover, the total quantum energy of the cluster may no longer
be determined independently of the embedding-lattice configuration.

3. Results

3.1. Lattice relaxations

Table 2 displays the calculated breathing-mode displacements of the three shells of ions
which neighbour the central Mn impurity. The manganese was assumed to be in its
electronic quartet states4A2g and 4T2g. Different degrees of approximation have been
employed to account for the local electronic structure of the defect cluster, i.e. descriptions
based on the shell model, and the HF and CI models. This order denotes the increasing
flexibility of the electronic structure modelled. We emphasize that pure shell-model
simulations are not able to reflect any changes which are related to the electronic state
of the Mn ion (the corresponding columns in table 2 are thus replicas of each other).

Inspecting table 2 we observe that all results are in remarkable qualitative agreement:
the pronounced inward relaxation of the Ba2+ ions, the outward relaxation of the Ti4+

ions and, finally, the inward relaxation of the oxygen ligands. The ligand relaxation is in
agreement with ion size arguments, becauseR(Mn4+) < R(Ti4+) (see [28]). Its calculated
size, however, depends on the degree of approximation applied to represent the electronic
structure of the MnO6 cluster. The more accurately it is described, the less are the calculated
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ligand relaxations. Within the shell model the deficiencies of representing defect-induced
electron redistributions are compensated by exaggerated displacements of the oxygen ions.
In comparison the ECC-derived oxygen displacements are smaller by an order of magnitude.
Table 2 further shows that the oxygen relaxations, particularly, are more pronounced, with
the manganese cation being in its4A2g ground state. Obviously, the excitation of the Mn4+

into the electronic4T2g state slightly increases the manganese radius, since the excited
state is more diffuse than the ground state. A similar argument may be applied to the CI
which admixes extended excited states into the HF ground state which allows for Coulomb
correlations.

Table 3. Total ion relaxations (̊A) within the first three neighbour shells of a central Ti4+ cation.
a: the bare ECP for the central Ti; b: the orbital representation analogous to Mn.−: inward
relaxation;+: outward relaxation.

Ion type a b

O2− + 0.073 −0.030
Ba2+ + 0.022 −0.130
Ti4+ −0.029 + 0.021

In order to distinguish between contributions due to a cluster–lattice mismatch and
proper defect-induced relaxations we also calculated the ion displacements for a perfect
cluster containing Ti4+ instead of Mn4+ as the central cation. These calculations (table 3)
have been performed within the HF approximation. The CI is again expected to further
reduce the oxygen ligand displacements. Two stages of a modelling are compared in table 3.
The first refers to a representation of the central Ti cation using a bare effective-core potential
(model a in table 3). This description is fully symmetric with respect to the outer Ti cations
at the cluster boundary. There are no effects of covalency between cations and anions. In
the second situation (model b) the electronic structure of the central Ti is treated equivalently
to that of the Mn impurity; thus, only the 1s–2p core electrons are simulated by effective-
core potentials, whereas the outer electronic structure is given explicitly. In this case the
symmetry between the central and the outer Ti cations is broken, since covalency and charge
transfer can take place between the oxygen anions and the central cation. Obviously, these
effects most importantly affect the radial relaxation of the Ba cations. Allowing charge
transfer onto the central Ti cation results in a pronounced inward displacement of the Ba
ions. However, the overall compatibility between both cluster descriptions and the shell-
model representation of the outer lattice is remarkable, since even the Ba displacements in
model b correspond to only 3.25% of the lattice constant.

Finally, the differences between the manganese and the titanium cluster (model b)
may be interpreted as purely impurity induced:δO = −0.016 Å, δBa = −0.255 Å and
δTi = +0.079 Å. These additional relaxations refer to the4A2g ground state of Mn4+. For
the 4T2g state we obtain:δO = −0.007 Å, δBa = −0.240 Å and δTi = +0.085 Å. The
calculated defect-induced ligand relaxations (referring to4A2g) are in satisfactory agreement
with reported effective-ion size differences (0.065Å) [28]. Generally, the defect-induced
relaxations will increase with increasing charge and size misfit of the impurity cation.
Indeed, preliminary HF simulations for Cr3+

Ti employing a smaller 3× 3 × 3 mesh of
a1g-type displacements yield the following defect-induced relaxations:δO = +0.068 Å,
δBa = −0.27 Å and δTi = +0.12 Å for the 4A2g state; andδO = +0.072 Å, δBa = −0.22
Å and δTi = +0.11 Å for the 4T2g state. In particular, the outward displacements of the
oxygen ions are larger by an order of magnitude than the reported radii differences between
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Ti4+ and Cr3+ [28]. This result suggests the dominating effects to be due to charge misfit
and confirms earlier shell-model-based simulations of Sangster [29].

Table 4. The energy separation between crystal-field states. oA: optical absorption; oE: optical
emission.

HF energy separation (eV) from4A2g

for different lattice geometries

Electronic state Undistorted 4A2g relaxed 4T2g relaxed

2Eg 1.87 1.84 1.84
4T2g 2.31 2.56(oA) 2.53(oE)

CI energy separation (eV) from4A2g

for different lattice geometries

Electronic state Undistorted 4A2g relaxed 4T2g

2Eg 1.65 1.65 —
4T2g 2.23 2.40(oA) 2.37(oE)

In the following sections we choose the total embedded-cluster relaxations (see table 2)
over the purely defect-induced displacement contributions, because only the first represent
fully equilibratedlattice structures.

3.2. Optical absorption and emission between crystal-field states

Table 4 displays the calculated energy separations between the excited4T2g and 2Eg states
and the electronic ground state4A2g. In these calculations the1SCF method has been
employed which takes into account all important orbital relaxation effects (see also section
3.3). Three different lattice geometries have been considered, i.e. observed perfect-lattice
spacings and a1g relaxed lattices corresponding to the4A2g and 4T2g electronic states of
Mn4+ (see section 3.1, table 2). The different lattice geometries obtained from HF and
CI methods have also been taken into account. However, further JT distortions, which
are to be expected for the orbitally degenerate excited states, were neglected at this stage.
The transition energies calculated with respect to the4A2g and 4T2g equilibrated lattices
correspond to optical absorption and emission, respectively. We note that HF-derived
excited-state energy separations from the ground state are 0.1–0.2 eV greater than the
corresponding CI energy differences. Besides a direct energetical effect, which may be
inferred by comparing HF and CI energy differences calculated in thesamelattice structure
(for example, compare the perfect-lattice results in table 4), there is an indirect effect which
is based on the differences between the relaxation patterns produced by HF and CI (see
section 3.1, table 2). In the case of the CI the smaller inward displacements of the oxygen
ions lead to a reduction of the crystal-field splittingE(4T2g)−E(4A2g). For example, taking
the two4A2g equilibrated geometries of table 2 we obtain a reduction of 0.06 eV. Generally,
the effect turns out to be60.1 eV.

The calculated Stokes shift, i.e. the difference between absorption and emission energies,
is small and equals 0.03 eV within HF and CI theory. The same order of magnitude
has been found for Cr3+ doped into MgO [30]. Because there are no experimental
data for Mn4+ in cubic BaTiO3, we compare our results with those for SrTiO3:Mn4+:
E(2Eg)−E(4A2g) = 1.71 eV andE(4T2g)−E(4A2g) = 2.14–2.23 eV (absorption) [31, 32].
From the smaller lattice constant in this material there will be essentially no ligand relaxation
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around an Mn4+ ion in SrTiO3; thus the experimental energies for SrTiO3:Mn4+ may safely
be compared with calculated energies for BaTiO3 which employ relaxed lattices. Whereas
the 2Eg-related separation is insensitive to lattice relaxations, there is a pronounced effect
for E(4T2g)−E(4A2g). Our calculated absorption energies (CI) are greater by∼0.2 eV than
the reported experimental data. We believe that the relaxation contributions due to a cluster–
lattice mismatch as discussed in section 3.1 are mainly responsible for this deviation. In
spite of this feature the agreement between calculated and experimental energy separations is
very encouraging. However, our results also suggest the importance of electron correlations
in predicting accurate crystal-field splittings.

Figure 2. Symmetry-adapted a1g , eg and t2g distortions of an MO6 octahedron.

Table 5. The coupling of local eg modes to4A2g and 4T2g . Note thatδ(O±z) = 2δeg and
δ(Oxy) = −δeg .

HF CI

4A2g
4T2g

4A2g
4T2g

δeg (au) — −0.029 — −0.017
EJT (cm−1) — −290 — −138
ωJT (cm−1) 650 652 768 710

The orbital degeneracy of the excited4T2g state leads under the action of appropriate
electron–phonon couplings to the occurrence of symmetry-reducing Jahn–Teller distortions.
These JT distortions were approximately treated by minimizing the total energy with respect
to the symmetry-adapted displacements of the oxygen ligands with the remaining ions
fixed in their a1g relaxed positions corresponding to the4T2g state. Figure 2 displays
the symmetry-adapted normal modes of an octahedron. Principally, eg

4T2g and t2g
4T2g
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Figure 3. The eg 4T2g Jahn–Teller effect. HF and CI potential energy curves are shown as a
function of δeg .

Table 6. Ion charges calculated from a MPA based on the excited Mn4+ 4T2g state. Further
details are given in the text.

Ion Charge (HF) Charge (NO-SDCI)

Mn 2.37 2.23
O (xy-plane) −1.75 −1.72
O (±z) −1.68 −1.67

electron–phonon interactions are JT active. Our HF and CI calculations do not show
any significant t2g

4T2g instability; therefore, in what follows we concentrate on the eg-
mode coupling. Jahn–Teller energies and frequencies have been obtained by fitting the
corresponding potential energy curves (PEC) with polynomials defined up to sixth order
in the JT-mode displacements. Whereas in the case of HF-PEC we obtained good quality
fits (corresponding to mean deviations<0.01 eV) even in the harmonic approximation
(i.e. employing parabolas), it was necessary to consider sixth-order terms for CI-PEC in
order to maintain the quality of our fits. This result suggests that correlation effects increase
the anharmonic potential terms. Table 5 compiles our calculations of eg-mode couplings. All
of the results are based on the best fits employing sixth-order polynomials. The frequencies
have been obtained from Taylor expansions to second order around the respective curve
minima. Inspection of table 5 shows that the introduction of correlation lowersEJT and
increases the vibration frequencies. An analogous influence on frequencies can also be
observed in the case of the breathing-mode a1g

4A2g electron–phonon couplings (HF: 830
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Figure 4. A configuration diagram displaying the energy dependence of the4A2g and 4T2g

states upon eg-type ligand distortionsδeg .

cm−1; CI: 980 cm−1). Table 6 displays calculated ion charges which have been obtained
from a Mulliken population analysis (MPA) for the excited4T2g state. These results are
based on HF and NO-SDCI charge densities which have been calculated employing the a1g

relaxed4T2g(CI) lattice. The occupied Mn4+ eg orbital corresponds to dx2−y2. We emphasize
the relative merit of MPA charges according to which only the differences between the HF
and CI analyses are physically significant, and not the calculated ion charges. It can be seen
that CI increases the charge transfer onto the central manganese cation which results in an
enhanced bonding stiffness and, thus, leads to the prediction of higher JT frequencies; at the
same time, correlation reduces the charge differences between thexy-planar oxygen ions
and the ones along±z which is in line with a reduction of the JT distortionδeg

. Figure 3
shows our calculated4T2g total HF and CI energies as a function of an eg JT distortion.
Figure 4 displays a configuration diagram related to the eg mode.

Finally, our simulations of JT distortions suggest a pronounced dynamical behaviour,
since the JT energies are small in comparison with the frequencies.

3.3. Stability and charge-transfer transitions

In this section we comment on the relative stability of Mn4+
Ti defect centres in BaTiO3. The

major questions that we are going to discuss concern the possible interpretation of orbital
energies derived from cluster calculations. We will review the assertion that only differences
in total cluster energies (1SCF) are physically relevant. Since the pioneering investigations
on transition-metal complexes [33–36] it has become clear that orbital energies may be
highly misleading. In spite of this knowledge there are even today publications which
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put some emphasis on cluster orbital energies (see, for example, [37–40]) or, at least, the
ascribed meanings of the orbital energies presented remain diffuse [41].

Returning to the stability of Mn4+, we, finally, employ the1SCF procedure to
investigate the energetics of charge-transfer reactions, which involve an electron transfer
from the oxygen ligand sphere onto the manganese cation.

By inspection of the orbital energies of the central (MnO6)8− cluster we observed the
singly occupied d(t2g) levels of the manganese below all doubly occupied oxygen 2p levels
corresponding to an energy separation of∼10 eV between the d orbitals and the top of
the ‘valence band’ states. At first glance this situation seems to reflect a highly excited
electronic state and one might guess that tetravalent manganese is extremely unstable
against charge transfer. However, two important facts should be borne in mind. First,
the cluster eigenvalues do not correspond to crystalline eigenstates! Thus, principally the
cluster eigenvalues do not provide any information on the positions of defect levels within
the band gap. Generally, the justification of any embedded-cluster calculation starts by
considering the total crystalline one-electron Hamiltonian (within Hartree–Fock or Kohn–
Sham theory), which is diagonal in the delocalized Bloch orbital representation. In the case
of insulators in which we are interested there are always unitary transformations between
the occupied Bloch orbitals and an equal number of localized orbitals [42]. It is therefore
possible to obtain an equivalent representation of the one-electron Hamiltonian employing
the (occupied) localized orbitals. Accordingly, the total crystalline electron density is given
by

ρ(r) =
occ∑
n,R

|ωn(r − R)|2 (7)

where the sum runs over the occupied orbitalsωn(r − R) belonging to the band indexn
and centred aroundR. Equation (7) provides the basis for separating the solid into a cluster
which is embedded in an outer host crystal. The additional introduction of a defect does
not cause any problems as long as the defect states are sufficiently localized. Next it is
important to realize that the one-electron problem formulated with localized orbitals is no
longer diagonal. However, the procedure of Kunz and Klein [43] demonstrates that the off-
diagonal Lagrange multipliers may be interpreted as short-range embedding potentials which
define the proper cluster boundary conditions. The remaining diagonal Lagrange multipliers
represent the eigenvalues of the embedded cluster. Up to this point our brief discussion
shows that eigenvalues of (small) clusters are not simply related to crystalline eigenvalues†.
The second remark concerns the physical significance of orbital energies of small quantum
systems such as atoms or molecular clusters. Within HF theory it is Koopmans’ theorem
which identifies the orbital energies with negative ionization energies. Orbital energy
differences are then approximate excitation energies. However, there is a precondition
for this theorem to work practically, i.e. excitation-induced orbital relaxation effects must
be negligibly small. Whereas this condition is fulfilled for delocalized eigenstates of large
systems like crystals, it is not guaranteed for small clusters of atoms. As an example
we consider the present (MnO6)8− cluster: first, we self-consistently calculated the4A2g

electronic state of this cluster. Then, without allowing any further orbital relaxations, we
calculated the two ionized states with one electron removed either from the top of the oxygen

† By extending the cluster size to infinity one would certainly observe that the cluster orbitals (and energies)
converge to their bulk limits. This relation provides information on how fast the cluster orbitals approach the
delocalized crystalline eigenstates. Typically one must consider large clusters in order to obtain the properties of
delocalized bulk orbitals. This observation, however, does not invalidate (small) embedded-cluster calculations,
because their justification derives from the use of localized crystalline orbitals based on equation (7).
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2p levels or from the d(t2g) manganese orbitals. The total energy differences with respect
to the 4A2g state provide the corresponding ionization energies. We therefore forced the
precondition of Koopmans’ theorem to be operative. The difference between the ionization
energies obtained in this way (∼10 eV) equals the difference of orbital energies quoted
above. Next we repeated the calculation of the ionization energies but taking into account
orbital relaxations. As a result of orbital relaxations (which mainly affect the ionization
from the localized d orbitals corresponding to an energy gain of∼7.1 eV) the difference
of ionization energies for the two processes reduces to about 3.9 eV. Thus, the1SCF
method shifts the d(t2g)-related states of manganese much closer to the oxygen 2p states.
Related discussions of the breakdown of Koopmans’ theorem in transition-metal complexes
are reported in [44–46].

We emphasize that1SCF energies may be considered as simplified cases of total crystal
energy differences calculated on the basis of equation (5), if the individual total energies
differ only with respect to the cluster state function9. In this fashion, differences between
SCF energies are the physically relevant quantities which are consistent with the embedded-
cluster approach, and not orbital energy differences. The situation differs slightly in the
case of embedded-cluster calculations based on the Xα exchange approximation [47] or,
more generally, on the density functional theory (DFT). Again,a priori the cluster orbital
energies are not related to crystalline one-electron energies. But differently to the HF case,
there is from the beginning no formal basis for Koopmans’ theorem relating the one-electron
energies to (unrelaxed) ionization energies. Instead, the theorem of Slater [47] (generalized
for DFT by Janak [48]) holds:

εi = ∂E[ρ]

∂ni

. (8)

For large numbers of electrons this theorem provides a relation between orbital energies
εi and corresponding occupation numbersni according to the Fermi–Dirac statistics. It is,
thus, plain that the different meanings of HF and Xα one-electron energies may result in a
substantially different level ordering. As an example we compare our HF orbital energies
with corresponding ones obtained from earlier Xα cluster calculations on (MnO6)8−[54].
Whereas within the HF model the d(t2g) manganese orbital energies are well separated from
the oxygen 2p levels, the same d orbital energies are close to the top of the oxygen 2p states
in the case of the Xα cluster calculations. Following Slater [47] the differences between
the orbital energies can be traced back to the differences between the respective exchange
potentials:

ε
Xα

i − εHF
i = VXα

(r) − VXHF,i(r). (9)

The inspection of Slater–Condon exchange parameters of transition-metal atoms suggests
that the 3p–3d exchange interaction is particularly responsible for the expected differences
between the exchange potentials.

Both the HF and the Xα one-electron energies are qualitatively related to an ionization,
i.e. the first ones on the basis of Koopmans’ theorem and the latter ones as a consequence
of the Fermi–Dirac statistics (the highest occupied orbitals should be most easily ionizable).
It may be assumed that Xα and HF orbital energies represent lower and upper bounds to the
true ionization energy based on1SCF which, however, can be substantially different from
the orbital energies, if the difference on the left-hand side of equation (9) is large. Then
we have to expect considerable orbital relaxation effects. Only in situations of delocalized
orbitals can we expect the difference between the Xα and HF exchange potentials to be
sufficiently small. The corresponding agreement of orbital energies then leads to a physical
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interpretation of the one-electron energies, since both Koopmans’ theorem and the Fermi–
Dirac condition are approximately fulfilled. This situation corresponds to crystalline one-
electron eigenstates close to the Fermi energy and agrees with general perceptions of DFT.

In summary, there are two main reasons for which physical interpretations of embedded-
cluster calculations should not be based on cluster orbital energies. First, cluster eigenvalues
correspond to localized crystal orbitals and are thus not directly related to the crystalline
eigenstates which provide the information on the defect levels in the band gap. Second,
orbital relaxation effects generally prevent a useful interpretation being made of cluster
eigenvalues as ionization energies.

Table 7. The energy separation (eV) between CT states and the Mn4+ ground state4A2g ,
1E = E(CT)−E(4A2g). Columns a and b refer to the high-spin configuration t3

2geg and to the

low-spin configuration t42g of Mn3+, respectively. The energies have been obtained from UHF
calculations, whereas the numbers in brackets refer to ROHF results. In the case of relaxed
lattices each electronic state has been calculated within its own equilibrium lattice geometry.

Lattice a b

Perfect 1.40 (1.13) 3.21
Relaxed 0.77 (0.5) 2.66

Finally, in order to establish the relative stability of the Mn4+
Ti centres it is necessary

to investigate charge-transfer (CT) reactions involving an electron transfer from the oxygen
ligands onto the manganese cation. These CT calculations have been performed employing
perfect-lattice spacings as well as relaxed lattice structures. For the latter type of calculation
we adopted a further approximative relaxation procedure in order to account for symmetry-
reducing lattice distortions accompanying the CT states. This method goes beyond the
treatment of JT distortions as outlined in section 3.2, since it allows the symmetry-reducing
lattice displacements to occur for all cluster ions and not only for the ligand anions. Such
a generalization seems to be necessary, because the modifications of the oxygen electron
structure due to CT are obviously more pronounced than in the case of the4T2g CF state. The
outer crystal lattice represented by 736 point ions with integral charges has been held fixed
corresponding to the relaxed crystal structure which is in equilibrium with the Mn4+ 4A2g

HF ground state. The cluster relaxation has been performed using the geometry optimization
facilities of the HONDO 7.0ab initio code. For this task the program has been modified
in order to include short-range Buckingham potentials between cluster ions and embedding
point charges. Table 7 lists the corresponding total energy differences (see equation (5))
between the CT states and the Mn4+ 4A2g state. The CT states invoke the formation of
Mn3+ for which we assumed two possible configurations, i.e. the high-spin configuration
t32geg (5Eg) and the low-spin configuration t4

2g (3T1g). The columns a and b in table 7
refer to these situations, respectively. The difference of these energies measures the energy
separation between the two Mn3+ crystal-field states. The Mn3+ high-spin configuration is
more favourable by 1.8–1.9 eV than the low-spin configuration. In the case of the high-
spin configuration of Mn3+ the created hole localizes on the two oxygen anions along±z,
because the occupied Mn3+ eg orbital corresponds to 3z2 − r2. In this case the electronic
structure of the acceptor-type cation (Mn3+) determines the localization properties of the
associated hole. More generally, it would be important to investigate the hole localization
as a function of size, charge state and electronic structure of the trapping acceptor defect.
For example, in suitable cases the trapping of two holes may be more favourable than
the association of only one hole which can initiate the formation of hole-type bipolarons.
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This has recently been shown for Mg2+
Ti acceptor cations [49]. Photo-ESR (electron spin-

resonance) experiments provided evidence that trapped holes play an important role in the
photorefractive mechanisms in BaTiO3 [50].

Table 7 shows that Mn4+ is stable against CT, since the4A2g ground state of Mn4+

represents the most favourable electronic state irrespective of the inclusion of lattice
relaxation. However, lattice relaxations lead to a reduction of the respective energy
separations. This is reasonable, because Mn4+ is almost identical to the substituted Ti4+; the
CT state, on the other hand, defines a comparatively larger perturbation of the local crystal
structure which needs stronger lattice relaxations for its compensation or screening. The
additional influence of electronic correlations has been investigated on the basis of Møller–
Plesset perturbation calculations to second order (MP2) and DFT. We used MP2 instead of
costly CI expansions, because the CADPAC code employed allows one to perform ‘direct’
MP2 calculations, which significantly reduces the necessary computer storage capacities.
The direct feature becomes particularly helpful as the the basis set considered becomes
more extended. Qualitatively, the effect of correlations may be understood on the basis of
increased covalency between the oxygen anions and the manganese cation. In comparison
to the HF case, electrons on the anions become more stabilized, but destabilized on the
cation. As a consequence the CT states are shifted to higher energies. Preliminary MP2
calculations, which employ the previous basis set (see section 2) as well as perfect-lattice
spacings, indicated a corresponding energy shift of about 0.6 eV (see also below).

Finally, we calculated the energy separations between the Mn4+ 4A2g state and the
lowest CT state involving for both states consistently either the4A2g relaxed lattice or
the CT relaxed lattice. In the first situation the energy separation corresponds to optical
absorption and in the second case it corresponds to optical emission. Within the UHF
approximation we obtained 1.1 eV as the onset value for the CT optical absorption, and
0.4 eV correspondingly for the CT optical emission. First, we observe that CT transitions
are characterized by large Stokes shifts. As expected this is different from the crystal-field
transitions discussed in section 3.2. Second, however, the calculated onset energy of the
CT optical absorption is somewhat smaller than reported experimental energies (>3.2 eV)
referring to SrTiO3:Mn4+

Ti [31]. In particular, the CT absorption energy is significantly
smaller than the4T2g−4A2g transition energy, which contradicts the experiments. We
emphasize that our predicted energy corresponds to the HF approximation and we suggest
that the inclusion of electron correlations is necessary and sufficient for calculating accurate
CT transition energies.

MP2 calculations based on the previous basis set (see section 2) and employing the4A2g

equilibrated crystal lattice yield 2.0 eV for the CT optical absorption. This value represents
a lower bound to the true CT energy, because unlike the crystal-field-splitting energies
the CT transition energies have been found to be highly dependent on the quality of the
basis set used. The reason for this different behaviour is based on the pronounced charge
redistributions accompanying CT. The accurate simulation of CT, therefore, needs a very
flexible basis set. For example, using a full-orbital, split-valence basis set for the manganese
cation, retaining the previous description of the oxygen anions (see section 2) and, finally,
augmenting this basis set with additional oxygen and manganese d-type functions increases
the UHF and MP2 CT absorption energies to 1.7 eV and 3.3 eV, respectively. It is noticed
that even with this sophisticated basis set the UHF CT absorption energy is significantly
smaller than the4T2g−4A2g CF transition energy which contradicts all relevant experience.
But, noticeably, in this case MP2 predicts a reasonable CT absorption energy which is
significantly greater than the4T2g−4A2g CF splitting and which satisfactorily agrees with
reported experimental data for SrTiO3:Mn4+

Ti [31].
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In order to extend the description of correlation contributions and to keep the required
computer capacities manageable at the same time, further simulations have been done
on the basis of density functional theory (DFT). According to Perdew and Levy [51]
every extremum density of the ground-state energy functional yields the exact energy of a
stationary state. Whereas the absolute minimum corresponds to the ground state, the other
extrema represent a subset of the excited states. Exact densities which do not extremize
the ground-state functional, however, provide lower bounds to the corresponding excited-
state energies, i.e.E[ρi ] < Ei wherei refers to any such excited state. Further, the set of
extremum densities of the ground-state functional generally forms a subset of all stationary
densities which may be obtained by applying the usual Kohn–Sham approach. However,
if the Kohn–Sham densities provide reasonable approximations to exact densities one may
use the above-stated inequality in order to estimate the required energy separations.

Keeping this information in mind we calculated the4A2g, 4T2g and the CT electronic
state energies employing the4A2g-state equilibrated lattice geometry which has been derived
earlier within HF theory. For these DFT calculations we used the CADPAC code [19] which
employs the Kohn–Sham procedure. The computational implementation involves Gaussian-
type basis functions and a numerical quadrature of all integrals which are related to the
effective one-electron exchange–correlation potential. The present calculations employed
the same sophisticated basis set as the MP2 calculations discussed above. In order to
approximate the unknown exact exchange–correlation functional an advanced functional has
been used which combines the exchange functional due to Becke [52] and the correlation
functional derived by Lee, Yang and Parr [53]. It is emphasized that this exchange–
correlation functional significantly improves on the commonly employed local density
approximation. The results of the present DFT simulations are encouraging: whereas the
4T2g state is 2.1 eV above the4A2g ground state, the CT absorption energy becomes 3.4 eV.
These energy separations, which are expected to give lower bounds to the true excited-state
separations from the ground state, are in good agreement with the corresponding values
obtained from the SDCI+ Q and MP2 calculations discussed above. Most importantly
we notice that the CT absorption energy is at least 1.2 eV greater than the respective CF
transition energy. Experimentally, for SrTiO3:Mn4+ a corresponding energy separation of
∼1 eV has been observed [31]. The remarkable quality of the present DFT results may at
least partly be traced back to significant electron density differences between the required
states. However, it is recalled in this context that there are also situations where DFT fails
to give reliable excited-state estimates. Most prominent is the inability of DFT to reproduce
the atomic multiplet structure [51].

In conclusion we observe that electron correlation contributions are necessary and
sufficient in order to reliably simulate CT transitions related to transition-metal impurities
in BaTiO3. The suggested embedded-cluster approach gives useful CT transition energies
provided that the set of basis functions employed is sufficiently flexible. In this context we
also briefly comment on the occurrence of symmetry-broken CT states within HF theory
which simulate a complete hole localization at exactly one of the oxygen ligand anions.
These localized CT states, though representing in many cases the most favourable HF states,
do not indicate the instability of particular impurity charge states in BaTiO3, but refer to
a general instability due to HF theory which is a manifestation of the so-called symmetry
dilemma. On the other hand, the symmetrized CT states discussed so far reflect the stability
properties of impurity cations in BaTiO3 at least qualitatively. In fact, after inclusion of
sufficient electron correlations the symmetrized CT solutions represent the most favourable
CT states for all transition-metal cations investigated. On the basis of this observation we
have discarded the localized CT states from the present considerations in order to avoid
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these additional HF-specific problems. A detailed discussion will, however, be presented in
a forthcoming publication.

Moretti and Michel-Calendini [54] reported a calculated CT transition energy of
∼2.8 eV. These cluster calculations were based on the Xα exchange approximation and on
perfect-lattice spacings. Further, these investigations neglected any correlation contributions.
We do not know the precise reasons for which our best UHF-based energy threshold is about
1 eV smaller, but it could be that the local Xα exchange potential underestimates the gain in
exchange energy between t2g- and eg-type electrons which occurs upon forming the Mn3+.
Moreover, certain shortcomings could also be due to the muffin-tin potential approximation
employed.

4. Conclusion

Using an embedded-cluster description we are able to reliably calculate the local electronic
properties of transition-metal cations incorporated into the perovskite-structured oxide
BaTiO3. The defect cluster consisting of 21 atoms is characterized on the basis of a
LCAO-SCF-MO approach. Our calculations consistently employed Hartree–Fock theory
and configuration interactions. The results are exemplified for Mn4+ transition-metal cations.
The embedding lattice is represented by a shell-model description. The explicit account of
lattice relaxations facilitates the calculation of absorption and emission energies related to
crystal-field and charge-transfer transitions. In particular, the calculation of charge-transfer
transitions necessitates the inclusion of electron correlations.
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